Mansoura University
Faculty of Engineering
BME Program
Final Examination

Course: MTH201
The counted marks: 50
(50% of the total mark)

Year: BME Level 2 Date: Dec. 2014 Time: 2 hours

Dr. Samir Shamseldeen

All computations are executed to FOUR decimal places

Question (1) [20 marks]

Given the following four-point data

x	0.25	0.5	1.25	1.5
f(x)	-0.5	1.0	1.5	3.0

- a) Estimate f(0.45) by using a second degree Newton's interpolating polynomial
- b) Determine the two constants a and b such that the curve $f(x) = ax + b \sin(2\pi x)$ fits the above data in the least-square sense.
- c) Assume that f''(x) can be approximated using the backward formula (h > 0)

$$f''(x) = \frac{1}{h^2} [c_1 f(x) + c_2 f(x - 3h) + c_3 f(x - 4h)] + \mathcal{O}(h^n)$$

- 1) Determine the three constants c_1, c_2, c_3 and the number n
- 2) Use this backward relation to find f''(1.25), (you should use a suitable value for h)
- 3) Is it possible to find f''(0.5) and f''(1.5) by using this formula? Explain.

Question (2) [30 marks]

a) Given the equation

$$f(x) = x^2 - \sin(x) - 7 = 0$$

- 1) Prove that there are two roots for this equation, one is negative and the other is positive.
- 2) Find the positive root correct to three decimal places using Simple iteration method
- 3) Find the negative root correct to three decimal places using Newton Raphson method
- b) Given the system

$$x + 4y + z = 1$$
, $2x + y + z = 5$, $x + y + 4z = 4$,

with the initial approximation $(x_0, y_0, z_0) = (2.0, 0, 0)$. Find the third approximation (x_3, y_3, z_3) using the two methods:

- 1) Jacobi iteration method
- 2) Gauss-Seidel method
- c) Given the initial value problem $yy' + sin(y) = x^2$, y(0) = 1.0. Find the approximate value of y(0.2) by using
 - 1) Taylor method of order two and h = 0.1
- 2) Runge-Kutta four method with h = 0.2